Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Cell ; 41(9): 1662-1679.e7, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625402

RESUMEN

Stem-like CD8+ T cells are regulated by T cell factor 1 (TCF1) and are considered requisite for immune checkpoint blockade (ICB) response. However, recent findings indicate that reliance on TCF1+CD8+ T cells for ICB efficacy may differ across tumor contexts. We find that TCF1 is essential for optimal priming of tumor antigen-specific CD8+ T cells and ICB response in poorly immunogenic tumors that accumulate TOX+ dysfunctional T cells, but is dispensable for T cell priming and therapy response in highly immunogenic tumors that efficiently expand transitory effectors. Importantly, improving T cell priming by vaccination or by enhancing antigen presentation on tumors rescues the defective responses of TCF1-deficient CD8+ T cells upon ICB in poorly immunogenic tumors. Our study highlights TCF1's role during the early stages of anti-tumor CD8+ T cell responses with important implications for guiding optimal therapeutic interventions in cancers with low TCF1+CD8+ T cells and low-neo-antigen expression.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Factor 1 de Transcripción de Linfocitos T , Humanos , Anticuerpos , Antígenos de Neoplasias , Inmunoterapia , Factor 1 de Transcripción de Linfocitos T/genética , Neoplasias/inmunología , Neoplasias/terapia
2.
BMC Bioinformatics ; 24(1): 286, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464281

RESUMEN

BACKGROUND: Integration site (IS) analysis is a fundamental analytical platform for evaluating the safety and efficacy of viral vector based preclinical and clinical Gene Therapy (GT). A handful of groups have developed standardized bioinformatics pipelines to process IS sequencing data, to generate reports, and/or to perform comparative studies across different GT trials. Keeping up with the technological advances in the field of IS analysis, different computational pipelines have been published over the past decade. These pipelines focus on identifying IS from single-read sequencing or paired-end sequencing data either using read-based or using sonication fragment-based methods, but there is a lack of a bioinformatics tool that automatically includes unique molecular identifiers (UMI) for IS abundance estimations and allows comparing multiple quantification methods in one integrated pipeline. RESULTS: Here we present IS-Seq a bioinformatics pipeline that can process data from paired-end sequencing of both old restriction sites-based IS collection methods and new sonication-based IS retrieval systems while allowing the selection of different abundance estimation methods, including read-based, Fragment-based and UMI-based systems. CONCLUSIONS: We validated the performance of IS-Seq by testing it against the most popular  analytical workflow available in the literature (INSPIIRED) and using different scenarios. Lastly, by performing extensive simulation studies and a comprehensive wet-lab assessment of our IS-Seq pipeline we could show that in clinically relevant scenarios, UMI quantification provides better accuracy than the currently most widely used sonication fragment counts as a method for IS abundance estimation.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN , Vectores Genéticos
3.
Mol Ther ; 30(10): 3209-3225, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614857

RESUMEN

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Animales , Ingeniería Genética , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Distribución Tisular
4.
Nat Cancer ; 2(6): 629-642, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34345830

RESUMEN

Low-affinity CD19 chimeric antigen receptor (CAR) T cells display enhanced expansion and persistence, enabling fate tracking through integration site analysis. Here we show that integration sites from early (1 month) and late (>3yr) timepoints cluster separately, suggesting different clonal contribution to early responses and prolonged anti-leukemic surveillance. CAR T central and effector memory cells in patients with long-term persistence remained highly polyclonal, whereas diversity dropped rapidly in patients with limited CAR T persistence. Analysis of shared integrants between the CAR T cell product and post-infusion demonstrated that, despite their low frequency, T memory stem cell clones in the product contributed substantially to the circulating CAR T cell pools, during both early expansion and long-term persistence. Our data may help identify patients at risk of early loss of CAR T cells and highlight the critical role of T memory stem cells both in mediating early anti-leukemic responses and in long-term surveillance by CAR T cells.


Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Células Madre
5.
Nat Commun ; 12(1): 1622, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712608

RESUMEN

Our mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


Asunto(s)
Células Asesinas Naturales/fisiología , Linfocitos/fisiología , Células Progenitoras Linfoides/fisiología , Linfocitos T/fisiología , Linfocitos B , Terapia Genética/métodos , Células Madre Hematopoyéticas , Humanos , Interferón gamma/metabolismo , Mutagénesis , Células Mieloides/fisiología , Proto-Oncogenes/genética , Proto-Oncogenes/fisiología
6.
Nat Med ; 26(2): 200-206, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988463

RESUMEN

Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells1,2. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34+ hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685). The primary objectives were to assess the safety and evaluate the efficacy and stability of biochemical and functional reconstitution in the progeny of engrafted cells at 12 months. The secondary objectives included the evaluation of augmented immunity against bacterial and fungal infection, as well as assessment of hematopoietic stem cell transduction and engraftment. Two enrolled patients died within 3 months of treatment from pre-existing comorbidities. At 12 months, six of the seven surviving patients demonstrated stable vector copy numbers (0.4-1.8 copies per neutrophil) and the persistence of 16-46% oxidase-positive neutrophils. There was no molecular evidence of either clonal dysregulation or transgene silencing. Surviving patients have had no new CGD-related infections, and six have been able to discontinue CGD-related antibiotic prophylaxis. The primary objective was met in six of the nine patients at 12 months follow-up, suggesting that autologous gene therapy is a promising approach for CGD patients.


Asunto(s)
Cromosomas Humanos X , Terapia Genética/métodos , Enfermedad Granulomatosa Crónica/genética , Lentivirus/genética , Adolescente , Antígenos CD34/genética , Niño , Preescolar , Comorbilidad , Silenciador del Gen , Genes Reguladores , Vectores Genéticos , Enfermedad Granulomatosa Crónica/terapia , Células Madre Hematopoyéticas/citología , Humanos , Masculino , NADPH Oxidasas/genética , Neutrófilos/metabolismo , Seguridad del Paciente , Regiones Promotoras Genéticas , Acondicionamiento Pretrasplante , Resultado del Tratamiento , Reino Unido , Estados Unidos , Adulto Joven
7.
Nat Commun ; 10(1): 2395, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160568

RESUMEN

Hematopoietic Stem/Progenitor cells (HSPCs) are endowed with the role of maintaining a diverse pool of blood cells throughout the human life. Despite recent efforts, the nature of the early cell fate decisions remains contentious. Using single-cell RNA-Seq, we show that existing approaches to stratify bone marrow CD34+ cells reveal a hierarchically-structured transcriptional landscape of hematopoietic differentiation. Still, this landscape misses important early fate decisions. We here provide a broader transcriptional profiling of bone marrow lineage negative hematopoietic progenitors that recovers a key missing branchpoint into basophils and expands our understanding of the underlying structure of early adult human haematopoiesis. We also show that this map has strong similarities in topology and gene expression to that found in mouse. Finally, we identify the sialomucin CD164, as a reliable marker for the earliest branches of HSPCs specification and we showed how its use can foster the design of alternative transplantation cell products.


Asunto(s)
Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Antígenos CD34/metabolismo , Células de la Médula Ósea , Linaje de la Célula , Endolina/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual
8.
Lancet Haematol ; 6(5): e239-e253, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30981783

RESUMEN

BACKGROUND: Wiskott-Aldrich syndrome is a rare, life-threatening, X-linked primary immunodeficiency characterised by microthrombocytopenia, infections, eczema, autoimmunity, and malignant disease. Lentiviral vector-mediated haemopoietic stem/progenitor cell (HSPC) gene therapy is a potentially curative treatment that represents an alternative to allogeneic HSPC transplantation. Here, we report safety and efficacy data from an interim analysis of patients with severe Wiskott-Aldrich syndrome who received lentiviral vector-derived gene therapy. METHODS: We did a non-randomised, open-label, phase 1/2 clinical study in paediatric patients with severe Wiskott-Aldrich syndrome, defined by either WAS gene mutation or absent Wiskott-Aldrich syndrome protein (WASP) expression or a Zhu clinical score of 3 or higher. We included patients who had no HLA-identical sibling donor available or, for children younger than 5 years of age, no suitable 10/10 matched unrelated donor or 6/6 unrelated cord blood donor. After treatment with rituximab and a reduced-intensity conditioning regimen of busulfan and fludarabine, patients received one intravenous infusion of autologous CD34+ cells genetically modified with a lentiviral vector encoding for human WAS cDNA. The primary safety endpoints were safety of the conditioning regimen and safety of lentiviral gene transfer into HSPCs. The primary efficacy endpoints were overall survival, sustained engraftment of genetically corrected HSPCs, expression of vector-derived WASP, improved T-cell function, antigen-specific responses to vaccinations, and improved platelet count and mean platelet volume normalisation. This interim analysis was done when the first six patients treated had completed at least 3 years of follow-up. The planned analyses are presented for the intention-to-treat population. This trial is registered with ClinicalTrials.gov (number NCT01515462) and EudraCT (number 2009-017346-32). FINDINGS: Between April 20, 2010, and Feb 26, 2015, nine patients (all male) were enrolled of whom one was excluded after screening; the age range of the eight treated children was 1·1-12·4 years. At the time of the interim analysis (data cutoff April 29, 2016), median follow-up was 3·6 years (range 0·5-5·6). Overall survival was 100%. Engraftment of genetically corrected HSPCs was successful and sustained in all patients. The fraction of WASP-positive lymphocytes increased from a median of 3·9% (range 1·8-35·6) before gene therapy to 66·7% (55·7-98·6) at 12 months after gene therapy, whereas WASP-positive platelets increased from 19·1% (range 4·1-31·0) to 76·6% (53·1-98·4). Improvement of immune function was shown by normalisation of in-vitro T-cell function and successful discontinuation of immunoglobulin supplementation in seven patients with follow-up longer than 1 year, followed by positive antigen-specific response to vaccination. Severe infections fell from 2·38 (95% CI 1·44-3·72) per patient-year of observation (PYO) in the year before gene therapy to 0·31 (0·04-1·11) per PYO in the second year after gene therapy and 0·17 (0·00-0·93) per PYO in the third year after gene therapy. Before gene therapy, platelet counts were lower than 20 × 109 per L in seven of eight patients. At the last follow-up visit, the platelet count had increased to 20-50 × 109 per L in one patient, 50-100 × 109 per L in five patients, and more than 100 × 109 per L in two patients, which resulted in independence from platelet transfusions and absence of severe bleeding events. 27 serious adverse events in six patients occurred after gene therapy, 23 (85%) of which were infectious (pyrexia [five events in three patients], device-related infections, including one case of sepsis [four events in three patients], and gastroenteritis, including one case due to rotavirus [three events in two patients]); these occurred mainly in the first 6 months of follow-up. No adverse reactions to the investigational drug product and no abnormal clonal proliferation or leukaemia were reported after gene therapy. INTERPRETATION: Data from this study show that gene therapy provides a valuable treatment option for patients with severe Wiskott-Aldrich syndrome, particularly for those who do not have a suitable HSPC donor available. FUNDING: Italian Telethon Foundation, GlaxoSmithKline, and Orchard Therapeutics.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Niño , Preescolar , Femenino , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Lactante , Italia , Masculino , Mutación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Acondicionamiento Pretrasplante/métodos , Resultado del Tratamiento , Síndrome de Wiskott-Aldrich/sangre , Síndrome de Wiskott-Aldrich/diagnóstico , Proteína del Síndrome de Wiskott-Aldrich/genética
9.
Nat Med ; 25(5): 776-783, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30911135

RESUMEN

Re-expression of the paralogous γ-globin genes (HBG1/2) could be a universal strategy to ameliorate the severe ß-globin disorders sickle cell disease (SCD) and ß-thalassemia by induction of fetal hemoglobin (HbF, α2γ2)1. Previously, we and others have shown that core sequences at the BCL11A erythroid enhancer are required for repression of HbF in adult-stage erythroid cells but are dispensable in non-erythroid cells2-6. CRISPR-Cas9-mediated gene modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells (HSCs). Here, we demonstrate that Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the +58 BCL11A erythroid enhancer results in highly penetrant disruption of this motif, reduction of BCL11A expression, and induction of fetal γ-globin. We optimize conditions for selection-free on-target editing in patient-derived HSCs as a nearly complete reaction lacking detectable genotoxicity or deleterious impact on stem cell function. HSCs preferentially undergo non-homologous compared with microhomology-mediated end joining repair. Erythroid progeny of edited engrafting SCD HSCs express therapeutic levels of HbF and resist sickling, while those from patients with ß-thalassemia show restored globin chain balance. Non-homologous end joining repair-based BCL11A enhancer editing approaching complete allelic disruption in HSCs is a practicable therapeutic strategy to produce durable HbF induction.


Asunto(s)
Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Secuencia de Aminoácidos , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Secuencia de Bases , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Elementos de Facilitación Genéticos , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Mutación INDEL , Proteínas Nucleares/genética , ARN Guía de Kinetoplastida/genética , Proteínas Represoras , Talasemia beta/sangre , Talasemia beta/genética , Talasemia beta/terapia , gamma-Globinas/biosíntesis , gamma-Globinas/genética
11.
Blood Adv ; 2(19): 2505-2512, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30282642

RESUMEN

Novel therapies for sickle cell disease (SCD) based on genetically engineered autologous hematopoietic stem and progenitor cells (HSPCs) are critically dependent on a safe and effective strategy for cell procurement. We sought to assess the safety and efficacy of plerixafor when used in transfused patients with SCD for HSC mobilization. Six adult patients with SCD were recruited to receive a single dose of plerixafor, tested at lower than standard (180 µg/kg) and standard (240 µg/kg) doses, followed by CD34+ cell monitoring in peripheral blood and apheresis collection. The procedures were safe and well-tolerated. Mobilization was successful, with higher peripheral CD34+ cell counts in the standard vs the low-dose group. Among our 6 donors, we improved apheresis cell collection results by using a deep collection interface and starting apheresis within 4 hours after plerixafor administration. In the subjects who received a single standard dose of plerixafor and followed the optimized collection protocol, yields of up to 24.5 × 106 CD34+ cells/kg were achieved. Interestingly, the collected CD34+ cells were enriched in immunophenotypically defined long-term HSCs and early progenitors. Thus, we demonstrate that plerixafor can be employed safely in patients with SCD to obtain sufficient HSCs for potential use in gene therapy.


Asunto(s)
Anemia de Células Falciformes/terapia , Eliminación de Componentes Sanguíneos , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/metabolismo , Compuestos Heterocíclicos/administración & dosificación , Adolescente , Adulto , Bencilaminas , Ciclamas , Relación Dosis-Respuesta a Droga , Terapia Genética/métodos , Movilización de Célula Madre Hematopoyética/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Inmunofenotipificación , Trasplante de Células Madre de Sangre Periférica/métodos , Proyectos Piloto , Adulto Joven
12.
Nat Med ; 24(11): 1683-1690, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275570

RESUMEN

Hematopoietic stem and progenitor cells (HSPC) are endowed with the role of generating and maintaining lifelong the extremely diverse pool of blood cells1. Clinically, transplantation of human HSPC from an allogeneic healthy donor or infusion of autologous gene-corrected HSPC can effectively replenish defective blood cell production caused by congenital or acquired disorders2-9. However, due to methodological and ethical constraints that have limited the study of human HSPC primarily to in vitro assays10 or xenotransplantation models11,12, the in vivo activity of HSPC has to date remained relatively unexplored in humans13-16. Here we report a comprehensive study of the frequencies, dynamics and output of seven HSPC subtypes in humans that was performed by tracking 148,093 individual clones in six patients treated with lentiviral gene therapy using autologous HSPC transplantation and followed for up to 5 years. We discovered that primitive multipotent progenitor and hematopoietic stem cell (HSC) populations have distinct roles during the initial reconstitution after transplant, compared with subsequent steady-state phases. Furthermore, we showed that a fraction of in vitro-activated HSC are resilient and undergo a defined delayed activation period upon transplant. Finally, our data support the concept that early lymphoid-biased progenitors might be capable of long-term survival, such that they can be maintained independently of their continuous production from HSC. Overall, this study provides comprehensive data on HSPC dynamics after autologous transplantation and gene therapy in humans.


Asunto(s)
Ingeniería Genética , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Sanguíneas/citología , Células Sanguíneas/trasplante , Linaje de la Célula/genética , Vectores Genéticos/uso terapéutico , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Células Madre/citología , Trasplante Autólogo/efectos adversos
13.
Mol Ther Methods Clin Dev ; 8: 152-165, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29687034

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp-/-Upp1-/- mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2-3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp-/-Upp1-/- mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.

14.
Mol Ther Methods Clin Dev ; 8: 21-30, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29159200

RESUMEN

Retroviral vectors, including those derived from gammaretroviruses and lentiviruses, have found their way into the clinical arena and demonstrated remarkable efficacy for the treatment of immunodeficiencies, leukodystrophies, and globinopathies. Despite these successes, gene therapy unfortunately also has had to face severe adverse events in the form of leukemias and myelodysplastic syndromes, related to the semi-random vector integration into the host cell genome that caused deregulation of neighboring proto-oncogenes. Although improvements in vector design clearly lowered the risk of this insertional mutagenesis, analysis of potential genotoxicity and the consequences of vector integration remain important parameters for basic and translational research and most importantly for the clinic. Here, we review current assays to analyze biodistribution and genotoxicity in the pre-clinical setting and describe tools to monitor vector integration sites in vector-treated patients as a biosafety readout.

15.
Hum Gene Ther ; 28(12): 1122-1129, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29160103

RESUMEN

Integration site (IS) analysis is one of the major tools for addressing the safety of gene therapy clinical protocols based on the use of integrating vectors. Over the past years, the study of viral insertions in gene therapy-treated patients has allowed identifying insertional mutagenesis events, evaluating the safety of new viral vector platforms and tracking the in vivo clonal dynamics of genetically engineered cell products. While gene therapy is progressively expanding its impact on a broader area of clinical applications, increasingly more accessible, faster, and more reliable safety readouts are required from IS analysis. Several actors, from researchers to clinicians, from regulatory agencies to private companies, have to interface to different degrees with the results of IS analysis while developing and evaluating gene therapy products based on retroviral vectors. This review is aimed at providing a brief overview of what the current state and the future is of these studies with a particular focus on what are the main analytical constraints that should be considered upon conducting IS analysis in clinical gene therapy.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/genética , Mutagénesis Insercional , Retroviridae/genética , Seguridad , Integración Viral , Terapia Genética/efectos adversos , Humanos
16.
Hematol Oncol Clin North Am ; 31(5): 737-752, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28895844

RESUMEN

Gene therapy using autologous or allogeneic cells offers promising possibilities to treat inherited and acquired diseases, ideally leading to a long-lasting therapeutic correction. This article summarizes efforts that use integrating vectors derived from retroviruses and transposons, and briefly explains integrating vector biology and integration site analysis and recent successful application of this technology in clinical trials. Moreover, outlined is how these vectors can be used for cancer gene discovery and clonal tracking of benign and malignant hematopoiesis to gain insights into the dynamics of hematopoiesis.


Asunto(s)
Rastreo Celular , Evolución Clonal , Ingeniería Genética , Terapia Genética , Vectores Genéticos , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Animales , Ensayos Clínicos como Asunto , Elementos Transponibles de ADN , Gammaretrovirus/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Humanos , Lentivirus/genética , Mutagénesis Insercional , Transgenes , Integración Viral
17.
Cytometry A ; 91(10): 952-965, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28609016

RESUMEN

Human hematopoiesis is a complex and dynamic system where morphologically and functionally diverse mature cell types are generated and maintained throughout life by bone marrow (BM) Hematopoietic Stem/Progenitor Cells (HSPC). Congenital and acquired hematopoietic disorders are often diagnosed through the detection of aberrant frequency or composition of hematopoietic cell populations. We here describe a novel protocol, called "Whole Blood Dissection" (WBD), capable of analyzing in a single test-tube, hematopoietic progenitors and all major mature cell lineages composing either BM or peripheral blood (PB) through a multiparametric flow-cytometry analysis. WBD allows unambiguously identifying in the same tube up to 23 different blood cell types including HSPC subtypes and all the major myeloid and lymphoid lineage compartments at different stages of maturation, through a combination of 17 surface and 1 viability cell markers. We assessed the efficacy of WBD by analyzing BM and PB samples from adult (n = 8) and pediatric (n = 9) healthy donors highlighting age-related shift in cell composition. We also tested the capability of WBD on detecting aberrant hematopoietic cell composition in clinical samples of patients with primary immunodeficiency or leukemia unveiling expected and novel hematopoietic unbalances. Overall, WBD allows unambiguously identifying >99% of the cell subpopulations composing a blood sample in a reproducible, standardized, cost-, and time-efficient manner. This tool has a wide range of potential pre-clinical and clinical applications going from the characterization of hematopoietic disorders to the monitoring of hematopoietic reconstitution in patients after transplant or gene therapy. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.


Asunto(s)
Células Sanguíneas/citología , Células Madre Hematopoyéticas/citología , Adulto , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo , Linaje de la Célula/fisiología , Niño , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/patología , Leucemia/metabolismo , Leucemia/patología
18.
Cell Stem Cell ; 19(1): 107-19, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27237736

RESUMEN

Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS analysis, we longitudinally tracked >89,000 clones from 15 distinct bone marrow and peripheral blood lineages purified up to 4 years after transplant in four Wiskott-Aldrich syndrome patients treated with HSPC gene therapy. We measured at the clonal level repopulating waves, populations' sizes and dynamics, activity of distinct HSPC subtypes, contribution of various progenitor classes during the early and late post-transplant phases, and hierarchical relationships among lineages. We discovered that in-vitro-manipulated HSPCs retain the ability to return to latency after transplant and can be physiologically reactivated, sustaining a stable hematopoietic output. This study constitutes in vivo comprehensive tracking in humans of hematopoietic clonal dynamics during the early and late post-transplant phases.


Asunto(s)
Rastreo Celular , Hematopoyesis , Antígenos CD34/metabolismo , Ingeniería Celular , Linaje de la Célula/genética , Preescolar , Células Clonales , Terapia Genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Masculino , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Mutagénesis Insercional/genética , Factores de Tiempo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia
19.
Curr Gene Ther ; 16(3): 184-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27121108

RESUMEN

Over the past years, clonal tracking has gained the center stage as a unique technology capable to unveil population dynamics and hierarchical relationships in vivo. We here highlighted the main open questions related to the in vivo clonal behavior of hematopoietic cells with a particular focus on hematopoietic stem and progenitor cells and T cells as main targets of cell- and gene-therapies. We walked through the current methods applied for tracing in vivo dynamics and functions of hematopoietic cells in animal models and we described the results of early studies conducted on humans. We specifically focused our attention on the recent use of retroviral/lentiviral vector Integration Site (IS) analyses to follow stably marked clones and their progeny in vivo. We showed how this molecular tracking method can be successfully employed in human studies to unveil the clonal behavior of hematopoietic cells, describing pioneering works conducted on samples from gene therapy treated patients. Clonal tracking through IS identification still comes with a complex wet-experimental protocol and technical/analytical constraints. In this regard, we reviewed the features of the available computational tools for the identification and quantification of ISs and we highlighted the potential future improvements of IS-based tracking, as this technology is becoming a major source of information on in vivo fate and survival of engineered cells in humans.


Asunto(s)
Células Madre Hematopoyéticas , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Células Clonales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subgrupos de Linfocitos T/fisiología
20.
Sci Transl Med ; 7(317): 317ra198, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26659572

RESUMEN

Long-lasting immune protection from pathogens and cancer requires the generation of memory T cells able to survive long-term. To unravel the immunological requirements for long-term persistence of human memory T cells, we characterized and traced, over several years, T lymphocytes genetically modified to express the thymidine kinase (TK) suicide gene that were infused in 10 patients after haploidentical hematopoietic stem cell transplantation (HSCT). At 2 to 14 years after infusion and in the presence of a broad and resting immune system, we could still detect effectors/effector memory (TEM/EFF), central memory (TCM), and stem memory (TSCM) TK(+) cells, circulating at low but stable levels in all patients. Longitudinal analysis of cytomegalovirus (CMV)- and Flu-specific TK(+) cells indicated that antigen recognition was dominant in driving in vivo expansion and persistence at detectable levels. The amount of infused TSCM cells positively correlated with early expansion and with the absolute counts of long-term persisting gene-marked cells. By combining T cell sorting with sequencing of integration (IS), TCRα and TCRß clonal markers, we showed that T cells retrieved long-term were enriched in clones originally shared in different memory T cell subsets, whereas dominant long-term clonotypes appeared to preferentially originate from infused TSCM and TCM clones. Together, these results indicate that long-term persistence of gene-modified memory T cells after haploidentical HSCT is influenced by antigen exposure and by the original phenotype of infused cells. Cancer adoptive immunotherapy might thus benefit from cellular products enriched in lymphocytes with an early-differentiated phenotype.


Asunto(s)
Rastreo Celular , Ingeniería Genética , Memoria Inmunológica , Linfocitos T/inmunología , Adulto , Anciano , Antígenos/inmunología , Proliferación Celular , Células Clonales , Femenino , Genes Transgénicos Suicidas , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Recuento de Linfocitos , Depleción Linfocítica , Masculino , Persona de Mediana Edad , Fenotipo , Timidina Quinasa/metabolismo , Factores de Tiempo , Donantes de Tejidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...